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Abstract 

For peptide drug development, two machine learning methods were applied in this 

study to clarify critical features that are responsible for cell-penetrating activity and non-

cytotoxicity of peptide. Lacking in dataset for peptides that exhibit both non-toxic and 

penetrating activities, therefore, two separate models were developed for the activity 

prediction. To construct cell penetrating peptides (CPPs) prediction model, 1,054 positive and 

1,009 negative datasets were retrieved from CPPsite and CPPsite2.0. While 1,528 toxic 

peptides and 1,528 non-toxic peptides retrieving from UniprotKB were used to generate 

toxicity prediction model. The feature extraction was performed using Interpol package, 

summarized the feature values by Moreau- Broto autocorrelation (AC), and selected 

Correlation-base feature selection (CFS) subsetEval. As a result of feature selection, 15 and 17 

features were acquired for modelling CPPs and toxicity activity, respectively. The models for 

CPPs and toxic peptide prediction constructed by Artificial Neural Network (ANN) yielded 

94.7% and 95.5% ROC, respectively, demonstrating our applicable models to predict cell 

penetrating and cytotoxicity activities of unknown peptides. 
  
Introduction 

Peptide and protein drugs holding the high specificity and low toxicity properties lead 

them become a keystone of pharmaceutical manufacture [1]. The major barrier of drug 

development is their low efficiency delivery and low stability within a cell [2]. Cyclotides, a 

family of disulfide rich, head-to-tail cyclized peptides, become the key to improve the drug 

development in recent years regarding their cyclic cystine knot (CCK) motif that make them a 

group of ultra-stable peptides. Nawae et.al. (2014) reported that the binding of KalataB1 (KB1), 

a member of cyclotides family, to the membrane interfacial zone can cause membrane 

disruption [3].  

Cell-penetrating peptides (CPPs), also known as protein transduction domains (PTDs) 

or membrane translocating sequences (MTSs) or Trojan peptides), are short peptides, 

characterized by highly cationic, rich in arginine and lysine amino acids in their sequences. 

They have an exceptional ability to cross cell membrane that made them to be importer for drug 

cargos [4]. There are two major uptake mechanisms of the CPPs including endocytosis and 

direct penetration which is depend on positive charge and hydrophobicity of peptides. Several 

studies demonstrated that positive residues in the peptide are significantly important for their 

uptake into the cell. For example, a study showed that poly-lysines can interact with negative 
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charged atoms in the membrane surface [5]. However, replacing of lysine with arginine cuased 

an increase of the uptake rate [6], which the poly-arginine of 7–15 residues is an optimal for 

the uptake requirement. Moreover, increasing of tryptophan residues in oligo-arginine 

sequences was reported to enhance the uptake efficiency [7]. Generally, hydrophobicity caused 

peptides sticking on the plasma membrane [8] and showed strong toxic properties via 

membrane disruption. Some report showed that amphipathic peptide disrupts the plasma 

membrane through the mechanism resemble to the pore forming of antimicrobial peptide [9]. 

Wherewith an internalization feature of CPPs without cytotoxic properties might be critical 

step for cyclotide modification in pharmaceutical application. 

Due to the massive accumulation of biological data generated by high-throughput 

technology, computational approaches become useful tool for biological data analysis. 

Machine learning-based approaches have been used in proteins functional prediction. Support 

Vector Machine (SVM) applied for CPPs prediction with 95.94% accuracy based on dataset of 

111 sequences was reported [10]; whereas other study found designing highly effective cell 

penetrating peptides with accuracy of 97.40% using the hybrid model that combines motif 

information and binary profile of the peptides [8]. However, cytotoxicity of CPPs have not 

been attentive concerned in any reported. In this study, we therefore aim to develop a prediction 

model for non-toxic CPPs with high accuracy and precision. 

 

Methodology:  

Data Set Compilation  

A dataset for constructing CPPs prediction model were CPPs and non-CPPs sequences 

obtained from CPPsite[11] and CPPsite 2.0[12] with sequence length of not more than 50 

amino acids. After redundant and noise were filtered, a total of 1,054 CPPs or positive set were 

randomly divided into two separate datasets containing 954 and 100 sequences to be used as 

training set and validation set, respectively. While 1,009 non-CPPs or negative set were 

randomly divided in to 909 and 100 sequences for being training set and validation set, 

respectively. For cytotoxicity prediction model, a dataset of toxic peptides was constructed 

from the amino acids sequence having less than 50 amino acids in length obtained from 

UniprotKB[13]. Likewise, the above, total 1,528 toxic peptides each of positive and negative 

sets were cleaned and randomly categorized into 1,375 and 153 sequences for being training 

set and validation set, respectively.  

 

Feature extraction and selection 

The total of 533 physicochemical properties were calculated for every peptide sequence 

using the Interpol package [14] then the features values were summarized by Moreau-Broto 

autocorrelation [15]. The feature selection was carried out using Waikato Environment for 

Knowledge Analysis ( WEKA)  software package [16] by using Correlation-base feature 

selection (CFS) subsetEval method [17]. 

 

Model training  

Training and test set were applied to two machine learning algorithms: Artificial Neural 

Network (ANN) with hyper parameter: Hidden Layer a, Learning Rate 0.3, Momentum 0.2, 

Training Time 500, and Validation Threshold 20. Support Vector Machine (SVM) with hyper 

parameter: Epsilon 1.0E-12, Num Flod  -1, Random Seed 1, and Tolerance Parameter 0.001 

[Figure 1A]. The training sets was assessed using 10-fold cross validation and evaluated on 

validation/independent dataset [Figure 1A].  
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Model performance measurement  

The factors for evaluating the performance of a machine learning program are 

calculated from confusion matrix. Four factors were applied in this work: precision, recall, F-

Measure, and Receiver Operating Characteristic (ROC).  

Finally, CPPs prediction and toxicity prediction models were connected and applied for 

predict non-toxic CPPs as shown in Figure 1B. 

 

 

 
   

 

 

 

 

 

 
 

Figure 1. A. Overview of prediction model construction and B. Final model of non- Toxic CPPs 

prediction. 

 

Results and Discussion 

To construct an efficient model for predicting non-toxic and cell-penetrating ability of 

any peptide sequence, two models were developed separately to predict CPPs and toxicity. 

More than 500 physiochemical features were extracted for each amino acid sequence in the 

dataset. Out of these features, 15 features (Table 1) were found strongly correlate with 

membrane penetration activity of the peptides in dataset while their toxicity were observed to 

correlate with 17 features (Table 2).  
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Table 1: The feature set of CPPs prediction model extracted by using Interpol package and 

summary by using Moreau-Broto autocorrelation method. 

Feature Description  

X131 Transfer_free_energy  

X267 Weights_for_alpha-helix_at_the_window_position_of_3  

X281 Weights_for_beta-sheet_at_the_window_position_of_4  

X295 Weights_for_coil_at_the_window_position_of_5  

X316 Transfer_free_energy_from_vap_to_chx  

X317 Transfer_free_energy_from_chx_to_oct  

X318 Transfer_free_energy_from_vap_to_oct  

X320 Energy_transfer_from_out_to_in(95  

X340 Information_measure_for_N-terminal_helix  

X343 Information_measure_for_extended  

X389 Hydration_potential  

X392 Principal_property_value_z3  

X397 Dependence_of_partition_coefficient_on_ionic_strength  

X507 Hydrophobicity_index  

X513 Weights_from_the_IFH_scale  

 

Table 2: The feature set of Toxic peptide prediction model extracted by using Interpol package 

and summary by using Moreau-Broto autocorrelation method. 

Feature Description  

X13 Retention_coefficient_in_HFBA  

X22 Polarizability_parameter  

X68 Consensus_normalized_hydrophobicity_scale  

X74 Optical_rotation  

X220 Optimized_transfer_energy_parameter  

X221 Optimized_average_non-bonded_energy_per_atom  

X259 Weights_for_alpha-helix_at_the_window_position_of_-5  

X261 Weights_for_alpha-helix_at_the_window_position_of_-3  

X263 Weights_for_alpha-helix_at_the_window_position_of_-1  

X276 Weights_for_beta-sheet_at_the_window_position_of_-1  

X284 Weights_for_coil_at_the_window_position_of_-6  

X320 Energy_transfer_from_out_to_in(95  

X341 Information_measure_for_middle_helix  

X347 Information_measure_for_N-terminal_turn  

X444 Side-chain_contribution_to_protein_stability  

X521 ALTFT_index  

X522 ALTLS_index  

 

CPPs prediction model 

Table 3 shows that the ANN model gained a better performance than SVM, especially, 

the Receiver Operating Characteristic (ROC) of 0.947 in comparison to that of 0.825. ANN is 

better than SVM in non-linear classification scenario because ANN provide multi-layer 

connection to deal with nonlinear problems, while SVM is based on the statistical learning 

theory for separating the data points into two different classes. Due to False negative (FN) of 

ANN CPPs prediction model were very low and ROC was calculated from true positive rate 

and false positive rate, led to the significantly high ROC value than precision, recall and F. 
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Table 3. Performance of CPPs prediction model evaluated on validation dataset 

Prediction 

algorithm 
TP FN TN FP Precision Recall F ROC 

ANN 89 11 82 18 0.857 0.855 0.855 0.947 

SVM 74 26 91 9 0.835 0.825 0.824 0.825 

 

Toxic peptide prediction model 

Similar to the CPPs prediction model, precision, recall, F-measure and ROC provided by ANN 

model were higher than those by SVM model (Table 4).  
 

Table 4. Performance of toxic peptide prediction model evaluated on validation dataset 

Prediction 

algorithm 
TP FN TN FP Precision Recall F ROC 

ANN 138 15 140 13 0.909 0.908 0.908 0.955 

SVM 139 14 136 17 0.899 0.899 0.899 0.899 

 

Conclusion 

The success of machine learning in model prediction relies on 3 things: the data set, 

feature set and machine learning algorithms. Suitable algorithm is necessary to achieve the 

good results. However, the algorithm classify the training set base on the features; the feature 

was extracted and selected from data set. This study provides classification model that apply 

set of critical physiochemical features (data not shown) for CPPs and toxic peptide prediction. 

Our results demonstrated that ANN achieved good accuracy for both CPPs and toxic peptide 

predictions. The models can be used to predict CPPs activity and toxicity of any unknown 

peptides with sequence length of less than 50 amino acids. 
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