

4-methoxycinnamyl *p*-coumarate from *Etlingera pavieana* inhibits inflammatory response via NF-κB signaling pathway in microglial cells

Mayuree Poonasri^{1,2}, Natthakarn Chiranthanut³, Ekaruth Srisook^{2,4} and Klaokwan Srisook^{1,2*}

¹ Department of Biochemistry and Research Unit of Natural Bioactive Compounds for Healthcare Products Development, Faculty of Science, Burapha University, Chonburi, Thailand

² Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi, Thailand

³ Department of Pharmacology and Center of Excellence for Innovation in Chemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand

⁴ Department of Chemistry and Research Unit of Natural Bioactive Compounds for Healthcare Products

Development, Faculty of Science, Burapha University, Chonburi, Thailand

* Corresponding author email: klaokwan@buu.ac.th

Abstract: 4-methoxycinnamyl p-coumarate (MCC) is one of active compounds isolated from Etlingera pavieana rhizomes. MCC has been previously reported to exhibit anti-inflammatory effects in macrophages and carrageenan-induced paw edema in rats. However, the anti-inflammatory activities of MCC in microglial cells have never been reported. Thus, in this study, we further investigated anti-inflammatory activity and possible mechanisms involved in lipopolysaccharide (LPS)stimulated BV2 microglial cells. The cytotoxicity of MCC on microglial cells was measured, and a non-toxic dose was selected for the anti-inflammation evaluation. The inflammatory responses of LPS-stimulated microglial cells were assessed by determinations of nitric oxide (NO), prostaglandins E₂ (PGE₂), and tumor necrosis factor- α (TNF- α) productions. In addition, the levels of critical enzymes and chief molecules in NF-kB pathways are determined. The results showed that MCC clearly inhibited the production of NO, PGE₂, and TNF- α in microglial cells. Concomitantly, the reductions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and TNF- α in a dose-dependent manner were observed. Furthermore, MCC suppressed the phosphorylations of inhibitor of NF-KB (IKB) and p65 subunit and decreased NF-KB nuclear translocation. In conclusion, MCC exhibits the potent anti-inflammatory activity in the LPS-stimulated microglial inflammation model by inactivation of NF-κB signaling pathway leading to reduced levels of NO, PGE₂ and TNF- α . Altogether, MCC may be as a potential therapeutic agent for neuroinflammatory disease treatment.

Keywords: Anti-inflammatory activity; 4-methoxycinnamyl *p*-coumarate; Microglial cells; Nitric oxide; Prostaglandins E₂; Tumor necrosis factor- α

Funding: This research was funded by the Research Grant of Burapha University through National Research Council of Thailand (Grant no.13.3/2562) and for the Research Unit of Natural Bioactive Compounds for Healthcare Products Development; by Graduate School, Burapha University (Fiscal Year 2020); and by Science Innovation Facility, Faculty of Science, Burapha University (SIF-IN-61910074).

Acknowledgments: M.P. was supported by a Research Assistantship from the Centre of Excellence for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, Ministry of Higher Education, Science, Research and Innovation, Thailand.

Copyright: © 2021 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses /by/4.0/).